segunda-feira, junho 15, 2009

Fonte de alimentação

A maior fonte de perigos para qualquer PC é a fonte de alimentação. Ela é a responsável por converter os 110 ou 220 volts da rede elétrica para os 12V, 5V e 3.3V fornecidos nas diferentes saídas, além de filtrar a corrente e atenuar picos de tensão. Por ser um dos componentes de mais baixa tecnologia, existe um enorme número de empresas que fabricam fontes de alimentação, com grandes variações na qualidade e no preço. Problemas relacionados à fonte de alimentação são especialmente perigosos, pois podem danificar outros componentes.

Toda fonte possui uma determinada capacidade de fornecimento, medida em watts. Fontes antigas fornecem 250 ou 300 watts, enquanto as atuais são capazes de fornecer 350, 450, 600 ou até mesmo 1000 watts. A capacidade anunciada é quase sempre a soma das capacidades nas três saídas, de forma que uma fonte de 350 watts pode ser capaz de fornecer apenas 150 watts na saída de 12V, por exemplo.

Temos aqui o exemplo de uma fonte de 450 watts, que, segundo o informado pelo adesivo, é capaz de fornecer 32 amperes na saída de 3.3V, 35 amperes na de 5V e mais 14 amperes na de 12V:

Para descobrir a capacidade em watts, basta multiplicar a tensão pela amperagem. Fazendo isso, descobrimos que as capacidades reais da fonte são 105.6 watts na saída de 3.3V, 175 watts na de 5V e 168 watts na de 12V. Os 450 watts prometidos são apenas um arredondamento da soma das capacidades das três saídas.

O que acontece quando a capacidade de fornecimento da fonte é excedido, ao instalar duas placas 3D de ponta em SLI, por exemplo? Se você tiver sorte, a fonte simplesmente vai desligar sozinha depois de algum tempo de uso, talvez causando a perda de alguns arquivos, mas sem danos ao equipamento. Porém, se você não for tão sortudo, os resultados podem ser mais imprevisíveis. A fonte pode literalmente explodir quando sobrecarregada, levando junto a placa-mãe, memórias, HD, processador e até mesmo seu caro par de placas 3D.

O primeiro cuidado ao montar o micro é dimensionar corretamente a capacidade da fonte. Os números anunciados pelo fabricante nem sempre correspondem à realidade (sobretudo nas fontes mais baratas), por isso é importante sempre trabalhar com um bom nível de tolerância. Tenha em mente que a capacidade da fonte pode decair com a passagem do tempo, devido ao desgaste de seus componentes, por isso quanto maior a margem de tolerância, melhor.

Antigamente (até a época do Pentium II), os processadores puxavam toda a corrente que utilizavam da saída de 5V (no caso dos 486 e Pentium) ou 3.3V (no caso do Pentium II e K6-2). Conforme processadores mais rápidos eram lançados, isso começou a se tornar um grande problema, já que a maior parte do fornecimento da fonte é destinada à saída de 12V e não à de 3.3V.

Para solucionar o problema, a partir do Pentium III FC-PGA o processador passou a consumir corrente da saída de 12V (a placa-mãe se encarrega de reduzir a tensão antes de fornecê-la ao processador), assim como as placas de vídeo offboard que utilizam conectores extra de energia, HDs, exaustores e drives ópticos. Atualmente, apenas componentes da placa-mãe, pentes de memória e placas de expansão diversas utilizam a saída de 3.3V, fazendo que ela seja um problema menor. Muitos componentes utilizam simultaneamente duas saídas, como os HDs, que utilizam a saída de 5V para alimentar os circuitos da placa lógica e 12V para o motor que faz girar os discos. A própria placa-mãe utiliza a saída de 5V para alimentar diversos componentes.

Você pode fazer uma conta rápida, somando o consumo dos componentes que utilizam a saída de 12V. Um HD de 7200 RPM consome de 15 a 20 watts, cada gravador de CD ou DVD consome 25 (enquanto está gravando), cada exaustor (incluindo o do cooler do processador) consome até 10 watts, um processador dual-core em full load pode consumir até 90 watts, enquanto uma placa 3D topo de linha pode consumir de 70 a 120 watts.

Se você tem um micro com dois HDs, dois gravadores de DVD, um processador dual-core e duas placas 3D em SLI, o consumo (apenas na saída de 12V) pode facilmente exceder os 350 watts. Como disse, a capacidade da fonte é dividida entre as saídas, de forma que, para obter 350 watts na saída de 12 volts e mais uma boa margem de tolerância, você precisaria de uma fonte de 700 watts ou mais. Usar uma fonte barata nesta configuração seria extremamente perigoso.

Se possível, prefira sempre comprar a fonte separada do gabinete, investindo alguns reais a mais em uma fonte de melhor qualidade. Fontes boas custam o dobro ou o triplo do preço, mas muitas vezes acabam se pagando com uma maior durabilidade, sobrevivendo a vários upgrades.

Você pode monitorar as tensões de saída da fonte através do setup e também através de utilitários de monitoramento. Quase sempre os fabricantes incluem algum no conjunto de utilitários incluído no CD de drivers. No Linux você pode utilizar o LMsensors e uma interface para ele, como o Ksensors:


Monitorando as tensões e temperaturas no Linux usando o KSensors

Ao montar um novo micro, procure simular uma situação de estresse (como rodar um benchmark, simular a gravação de um DVD e rodar um game 3D, tudo ao mesmo tempo) que exija o máximo de todos os componentes e acompanhe as variações no fornecimento da fonte. Assim como em outros componentes, a maioria dos problemas de fornecimento se manifesta apenas quando a fonte é mais exigida. Ser capaz de manter um fornecimento estável e tensões corretas, não é uma garantia de que a fonte realmente esteja 100%, mas já permite descartar 90% dos problemas graves.

Variações de até 5%, para mais ou para menos, são perfeitamente normais, mas variações acima disso (sobretudo variações para mais) podem danificar componentes sensíveis. Normalmente, as primeiras vítimas são os capacitores e circuitos de alimentação da placa-mãe, que são responsáveis por reduzir as tensões da fonte aos valores utilizados pelos diferentes componentes, seguidos pelos pentes de memória e pelo HD. A grande maioria dos casos de placas-mãe com capacitores estufados e outros danos relacionados são causados justamente por fontes defeituosas.

Pessoalmente, sempre que recebo um micro com problemas de hardware relacionados aos pentes de memória, HD ou placa-mãe, opto por substituir a fonte junto com os outros componentes necessários, pois a possibilidade da própria fonte ter causado os danos é muito grande. Sem substituir a fonte, você pode cair em problemas recorrentes, como substituir um pente de memória danificado e, depois de algumas semanas ou meses, o micro voltar a apresentar o mesmíssimo problema, obrigando-o a gastar duas vezes. Se, depois de testes adicionais, você descobrir que o problema não era na fonte, pode usá-la em outro micro (de preferência algum micro mais antigo, com componentes de menor valor).

Caso você desconfie de sobretensão nas saídas da fonte, é possível também testá-la usando um multímetro, sem precisar arriscar danificar um micro. As fontes ATX possuem um circuito que faz com que a fonte seja ligada e desligada pela placa-mãe, ao invés de usar uma chave liga-desliga, como as antigas fontes AT. O conector de uma fonte ATX possui 20 (ou 24) fios, sendo que o fio verde é o responsável por ligar a fonte. Quando é fechado um circuito entre o fio verde e o fio preto ao lado, a fonte liga e, quando o circuito é aberto, ela desliga automaticamente.

Em PCs baseados no padrão ATX, o botão liga/desliga do gabinete é ligado na placa-mãe e ela se encarrega de ligar e desligar a fonte. É graças a isso que os micros atuais podem ser desligados através do sistema operacional, ao contrário dos antigos. Se você olhar o conector na horizontal, com o pino de encaixe virado para baixo, o fio verde é o quarto da linha de baixo, contando da direita para a esquerda. As fontes recentes utilizam conectores de 24 pinos, onde os 4 pinos adicionais estão posicionados à esquerda e não alteram a posição dos demais.

Use um pedaço de fio com as duas pontas descascadas (dobrado em U) para fechar um circuito entre o fio verde e o fio preto ao lado (o quinto da direita para a esquerda). Como estamos lidando com eletricidade, é sempre importante tomar muito cuidado. Se você causar um curto, a fonte pode literalmente explodir na sua cara (estou falando sério).

Ao fechar o circuito, a fonte liga e, ao retirar o fio, ela desliga imediatamente; por isso é preciso manter o fio posicionado durante todo o teste:

Programe o multímetro para medir tensão contínua (identificada no multímetro pelo símbolo V—) em uma escala de 20v, como na foto a seguir. Se você desconfiar de problemas na fonte, pode começar com a escala de 200v, só pra garantir, já que uma tensão mais alta que a escala pode danificar o multímetro:

Todos os fios da mesma cor são ligados em paralelo, por isso não existe necessidade de testar cada um dos vermelhos, depois cada um dos amarelos, etc. basta testar um de cada. Os fios vermelhos fornecem 5V, os amarelos fornecem 12V e os laranjas são os responsáveis pela tensão de 3.3V. Os fios pretos são todos neutros, usados para fechar circuitos com os demais.

Para medir a tensão de cada uma das saídas, você conecta o pólo negativo (preto) do multímetro a um dos fios pretos e conecta o pólo positivo (vermelho) a fios de cada uma das três cores, sempre tomando muito cuidado. Como disse, variações de até 5% são perfeitamente normais e, além disso, as fontes costumam sempre fornecer uma tensão um pouco maior quando estão sem carga, por isso não se assuste se o multímetro mostrar 12.6V, 5.25V e 3.45V (respectivamente), por exemplo.


Medindo as tensões da fonte usando um multímetro

Para tornar a medição mais apurada, é interessante adicionar alguma carga na fonte, ligando um HD velho, por exemplo. Basta conectá-lo em um dos conectores molex da fonte antes de fazer as medições. Algumas fontes podem fornecer tensões muito mais altas que o normal quando completamente sem carga, gerando falsos positivos.

Aqui temos um esquema com a pinagem do conector de fonte ATX, para consulta. Note que a fonte fornece também tensões de -5V e -12V, mas elas não são usadas pelas placas modernas, de forma que você não precisa se dar ao trabalho de testá-las:

O ponto fraco deste teste do multímetro é que ele mostra as tensões da fonte sem (ou com pouca) carga, quando a maioria dos problemas só aparece quando a fonte está sob stress, em situações reais de uso. De qualquer forma, testar com o multímetro é uma boa forma de testar fontes já sob suspeita, evitando ter que fazer o teste usando mais um micro inocente.

Uma única fonte defeituosa não compromete a integridade do fabricante, afinal problemas diversos podem ocorrer durante o uso. Entretanto, se você perceber irregularidades nas tensões fornecidas ou defeitos prematuros em mais de uma fonte de um mesmo modelo ou lote, troque rapidamente de fornecedor.

Finalmente, a dica mais óbvia e justamente por isso muitas vezes esquecida: verifique a posição da chave 110/220 antes de ligar. Quase todas as fontes vêm com a chave na posição 220 de fábrica, por isso é necessário mudar para 110 antes de ligar o micro. Antes de ligar qualquer micro em uma tomada 220, cheque novamente e mude a chave. A menos que você tenha muito azar, ligar uma fonte chaveada para 220 em uma tomada 110 vai apenas fazer com que o micro não ligue, mas o contrário é quase sempre fatal.